Znaczenie niedoboru i nadmiaru żelaza w organizmie człowieka w patogenezie wybranych chorób systemowych


Iron deficiency
Iron deficiency anemia
reactive oxygen species

How to Cite

Stawarz-Janeczek M, Szczeklik K, Muszyńska B, Pytko-Polończyk J. Znaczenie niedoboru i nadmiaru żelaza w organizmie człowieka w patogenezie wybranych chorób systemowych. mir [Internet]. 25Mar.2024 [cited 14Jul.2024];30(121):231-7. Available from: https://interrev.com/mir/index.php/mir/article/view/228


Iron is a microelement necessary for the functioning of most organisms. Maintaining proper iron homeostasis is extremely important because both its deficiency and excess are harmful to the body.

The aim of the study was to present the importance of the role of iron in the pathogenesis of diseases caused by its deficiency or excess.

According to estimates, about 30% of the global population has health problems due to iron deficiency, which is the main cause of anemia. Excess iron in the body, caused by a genetic disorder of its absorption and, more often, other reasons, stimulates oxidative stress with the formation of active hydroxyl radicals with subsequent damage to cells and organs, as well as cell death dependent on iron metabolism – ferroptosis. A number of diseases that involve overloading the body with this element may be related to ferroptosis, causing cancer, neurodegenerative diseases, ischemia-reperfusion damage, and damage to the kidneys and gastrointestinal tract, including the liver, pancreas or lungs.



Buford TW, Carter CS, VanDerPol WJ, Chen D, Lefkowitz EJ, Eipers P et al. Composition and richness of the serum microbiome differ by age and link to systcopdemic inflammation. GeroScience. 2018; 40(3): 257-68. https://doi.org/10.1007/s11357-018-0026-y

Lázár GJr, Varga J, Lázár G, Duda E, Takács T, Balogh A, et al. The effects of glucocorticoids and a glucocorticoid antagonist (RU 38486) on experimental acute pancreatitis in rat. Acta Chir Hung. 1997; 36(1-4): 190-1. PMID: 9408342

Fekete M, Szarvas Z, Fazekas-Pongor V, Fehér Á, Varga JT. Clinical significance of bacteria in the human body in practice. Egfejl 2022; 62(4): 31-3. https://ojs3.mtak.hu/index.php/egfejl/article/view/6928

Böszörményi Nagy Gy, Balikó Z, Kovács G, et al. Protocol on diagnosis and therapy of the basic and emergency management of patients affected by chronic obstructive pulmonary disease. [Egészségügyi szakmai irányelv a krónikus obstruktív tüdőbetegség (COPD) diagnosztikájáról és kezeléséről az alap-, a szak- és a sürgősségi ellátás területére.] Med Thor. 2014; 67(Suppl): 79– 113. Available from: https://www.copdplatform.com/res/file/national-documents/hun-guidelines.pdf [accessed: December 11, 2022].

Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, Nelson KE, et al. Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience. 2019; 41(6): 907-21. https://doi.org/10.1007/s11357-019-00098-8

Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Molecular Neurobiology. 2018; 55(11): 8243-50. https://doi.org/10.1007/s12035-018-0983-2

Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences. 2020; 1461(1): 37-52. https://doi.org/10.1111/nyas.14107

Marton J, Farkas G, Takacs T, Nagy Z, Szasz Z, Varga J, et al. Beneficial effects of pentoxifylline treatment of experimental acute pancreatitis in rats. Res Exp Med (Berl). 1998; 197(5): 293-9. https://doi.org/10.1007/s004330050078

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346): 174-80. https://doi.org/10.1038/nature09944

DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases. 2016; 22(5): 1137-50. https://doi.org/10.1097/MIB.0000000000000750

Pallen MJ, Quraishi MN. The Gut Microbiota and the Hepatologist: Will Our Bugs Prove to be the Missing Link? Digestive Diseases. 2017; 35(4): 377-83. https://doi.org/10.1159/000456590

Shimizu Y, Nakamura K, Kikuchi M, Ukawa S, Nakamura K, Okada E, et al. Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study. GeroScience. 2021; 10.1007/s11357-021-00398-y. https://doi.org/10.1007/s11357-021-00398-y

Justice JN GS, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. . GeroScience. 2021; 43: 1093-112. https://doi.org/10.1007/s11357-020-00261-6

Janda L, Mihalčin M, Šťastná M. Is a healthy microbiome responsible for lower mortality in COVID-19? Biologia. 2021; 76(2): 819-29. https://doi.org/10.2478/s11756-020-00614-8

Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences. 2011; 108(13): 5354-9. https://doi.org/10.1073/pnas.1019378108

Belkacem N, Serafini N, Wheeler R, Derrien M, Boucinha L, Couesnon A, et al. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One. 2017; 12(9): e0184976. https://doi.org/10.1371/journal.pone.0184976

Nakayama Y, Moriya T, Sakai F, Ikeda N, Shiozaki T, Hosoya T, et al. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci Rep. 2014; 4: 4638. https://doi.org/10.1038/srep04638

Jung Y-J, Lee Y-T, Ngo VL, Cho Y-H, Ko E-J, Hong S-M, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Scientific Reports. 2017; 7(1): 17360. https://doi.org/10.1038/s41598-017-17487-8

Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020; 285: 198018. https://doi.org/10.1016/j.virusres.2020.198018

Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020; 226: 57-69. https://doi.org/10.1016/j.trsl.2020.08.004

Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473-4. https://doi.org/10.1126/science.abb8925

Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020; 9. https://doi.org/10.7554/eLife.59177

Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience. 2020; 42(1): 333-52. https://doi.org/10.1007/s11357-019-00137-4

Márton J, Farkas G, Nagy Z, Takács T, Varga J, Szász Z, et al. Plasma levels of TNF and IL-6 following induction of acute pancreatitis and pentoxifylline treatment in rats. Acta Chir Hung. 1997; 36(1-4): 223-5. PMID: 9408354.

Varga JT, Szilasi M. A pulmonológiai rehabilitáció kézikönyve. SpringMed Kiadó Kft. 2018.

Aktas B, Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol. 2020;44(3):265-272. https://doi.org/10.3906/biy-2005-102

Fekete S, Szabó D, Tamás L, Polony G. The role of the microbiome in otorhinolaryngology. Orv Hetil. 2019; 160(39): 1533-41. https://doi.org/10.1556/650.2019.31451

Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506. https://doi.org/10.1038/s41422-020-0332-7

Varga J. Krónikus obstruktív tüdőbetegség (COPD). Háziorvosi Továbbképző Szemle. 2010; XV(1): 2-6. [Hungarian]

Varga J, Boda K, Somfay A. A kontrollált es nem kontrollált alsó végtagi dinamikus tréning hatása krónikus obstruktív tüdobetegségben szenvedok rehabilitációjában [The effect of controlled and uncontrolled dynamic lower extremity training in the rehabilitation of patients with chronic obstructive pulmonary disease]. Orv Hetil. 2005; 146(44): 2249-2255. PMID: 16302356 [Hungarian]

Varga J, Munkácsi A, Máthé Cs, Somfay A, Balint B, Lovasz O et al. The effect of the inspiratory muscles training on physical condition in COPD. [A belégző izmok tréningjének hatása a betegek fizikai állapotára COPD-ben.] Med Thor. 2018; 71: 96–102. [Hungarian]

Fekete M, Pongor V, Fehér Á, Veresné Bálint M, Varga JT, Horváth I. Relationship of chronic obstructive pulmonary disease and nutritional status - clinical observations. Orv Hetil. 2019; 160(23): 908-13. https://doi.org/10.1556/650.2019.31386

Szucs B, Petrekanits M, Varga J. Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease. J Thorac Dis. 2018; 10(12): 6482-90. https://doi.org/10.21037/jtd.2018.10.104

Marsland BJ, Trompette A, Gollwitzer ES. The Gut-Lung Axis in Respiratory Disease. Ann Am Thorac Soc. 2015; 12 Suppl 2: S150-6. https://doi.org/10.1513/AnnalsATS.201503-133AW

Zhuang H, Cheng L, Wang Y, Zhang Y-K, Zhao M-F, Liang G-D, et al. Dysbiosis of the Gut Microbiome in Lung Cancer. Frontiers in Cellular and Infection Microbiology. 2019; 9(112). https://doi.org/10.3389/fcimb.2019.00112

Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014; 20(2): 159-66. https://doi.org/10.1038/nm.3444

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159(3): 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Zuo T, Wu X, Wen W, Lan P. Gut Microbiome Alterations in COVID-19. Genomics Proteomics Bioinformatics. 2021; 19(5): 679-688. https://doi.org/10.1016/j.gpb.2021.09.004

Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70(4): 698-706. https://doi.org/10.1136/gutjnl-2020-323020

Varga JT, Boros E, Czibók Cs, Kováts Zs, Bogos K, Müller V, Szilasi M. COVID-19 betegek komplex rehabilitációja. Szakmai protokoll 2020 Available from: https://tudogyogyasz.hu/Media/Download/29632

Fekete M, Szarvas Z, Fazekas-Pongor V, Fehér Á, Dósa N, Lechoczky A et al. COVID-19 infection in patients with chronic obstructive pulmonary disease: From pathophysiology to therapy. Mini-review [published online ahead of print, 2022 Feb 28]. Physiol Int. 2022;10.1556/2060.2022.00172. https://doi.org/10.1556/2060.2022.00172

Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, et al. Enterococcus faecalis Metalloprotease Compromises Epithelial Barrier and Contributes to Intestinal Inflammation. Gastroenterology. 2011; 141(3): 959-71. https://doi.org/10.1053/j.gastro.2011.05.035

Galvan-Pena S, Leon J, Chowdhary K, Michelson D, Vijaykumar B, Yang L et al. Profound Treg perturbations correlate with COVID-19 severity. Proc Natl Acad Sci U S A. 2021; 118(37): e2111315118. https://doi.org/10.1073/pnas.2111315118

Segal JP, Mak JWY, Mullish BH, Alexander JL, Ng SC, Marchesi JR. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol. 2020; 13: 1756284820974914. https://doi.org/10.1177/1756284820974914

Liu Q, Mak JWY, Su Q, Yeoh YK, Lui GC, Ng SSS, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut, 2022; 0: 1-9. https://doi.org/10.1136/gutjnl-2021-325989

Ghimire S, Sharma S, Patel A, Budhathoki R, Chakinala R, Khan H,et al. Diarrhea Is Associated with Increased Severity of Disease in COVID-19: Systemic Review and Metaanalysis. SN Compr Clin Med. 2021; 3(1): 28-35. https://doi.org/10.1007/s42399-020-00662-w

Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022; 10(1): 1-11. https://doi.org/10.12998/wjcc.v10.i1.1

Bishehsari F, Adnan D, Deshmukh A, Khan SR, Rempert T, Dhana K, et al. Gastrointestinal Symptoms Predict the Outcomes From COVID-19 Infection. J Clin Gastroenterol. 2022; 56(2): e145-e148. https://doi.org/10.1097/MCG.0000000000001513

Wu JY, Huang PY, Liu TH, et al. Clinical efficacy of probiotics in the treatment of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther. 2023;21(6):667-674. https://doi.org/10.1080/14787210.2023.2189100

Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells. 2023;12(1):184. https://doi.org/10.3390/cells12010184

Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020; 14: 1753466620937170. https://doi.org/10.1177/1753466620937170

Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Health. 2020; 8: 186. https://doi.org/10.3389/fpubh.2020.00186

Schmitter T, Fiebich BL, Fischer JT, Gajfulin M, Larsson N, Rose T, et al. Ex vivo anti-inflammatory effects of probiotics for periodontal health. J Oral Microbiol. 2018; 10(1): 1502027. https://doi.org/10.1080/20002297.2018.1502027

Ayyanna R, Ankaiah D, Arul V. Anti-inflammatory and Antioxidant Properties of Probiotic Bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar Albino Rats. Front Microbiol. 2018; 9: 3063. https://doi.org/10.3389/fmicb.2018.03063

Wang H, Wang Y, Lu C, Qiu L, Song X, Jia H, et al. The efficacy of probiotics in patients with severe COVID-19. Ann Palliat Med. 2021 Dec;10(12): 12374-12380. https://doi.org/10.21037/apm-21-3373

d'Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front Med (Lausanne). 2020; 7: 389. https://doi.org/10.3389/fmed.2020.00389

Johnsen PH, Hilpüsch F, Cavanagh JP, Leikanger IS, Kolstad C, Valle PC, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018; 3(1): 17-24. https://doi.org/10.1016/S2468-1253(17)30338-2

Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res. 2020; 48(6): 300060520925693. https://doi.org/10.1177/0300060520925693

Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica. 2019; 104(8): 1682-1688. https://doi.org/10.3324/haematol.2018.198549

Biliński J, Winter K, Jasiński M, Szczęś A, Bilinska N, Mullish BH, et al. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut. 2022; 71(1): 230-232. https://doi.org/10.1136/gutjnl-2021-325010