Abstract
Due to the valuable properties of carotenoidsthe interest in new methods of obtaining them is still increasing. For this purpose, since the 60s of the twentieth century, scientists conducted numerous studies to recognize the processes in which carotenoids could be produced . Carotenoids, revealing a strong antioxidant activity, act as free radical scavengers. These compounds can support many beneficial processes such as the stimulation of the immune system, the modulation of intracellular signaling pathways, the regulation of the cell cycle and apoptosis as well as theregulation of growth factors. Carotenoids were determined by spectrophotometric analysis in the following fungal species: Leucopaxillus giganteus, Sarcodon imbricatus, Lactarius piperatus, Lactarius deliciosus, Agaricus arvensis, Agaricus bisporus, Agaricus romagnesii, Agaricus silvaticus, Agaricus silvicola, Hypholoma fasciculare, Calocybe gambosa, Craterellus cornucopioides, Marasmius oreades. High performance liquid chromatography (HPLC) coupled with a UV detector detected β,β-carotene in Agaricus bisporus, Polyporus squamosus, Lepista nuda, Russula delica, Verpa conica, Pleurotus ostreatus and Hypsizgus marmoreus. β-carotene and lycopene were also found in three wild species of edible mushrooms: Leucopaxillus giganteus, Sarcodon imbricatus and Agaricus arvensi. These compounds were isolated in several species of the family Cantharellus as well. One example is Cantharellus cibarius, which contains mainly β,β-carotene and minor amounts of lycopene, α-carotene and other carotenoids, which may be δ – and γ – isomers.